暑期班本月开始!与身边人分享<a>您的推荐码</a>,如果他们在6月30日之前注册课程,您和他们都将获得100美元的KTBYTE积分。积分可在下一次付款时使用,与美金等值折算。

Deep Learning

[AI 2]

Full Course

$2021 USD
原价
for 18 hours

课程套餐

课程项目
1 project per half semester.
虚拟机(VM)
虚拟机是一个远程桌面,学生可以从任何地方连接到它。 我们提供虚拟机供学生在课堂上使用以及完成课后作业。
学生学习进度报告
Students will get personalized progress reports and feedback from the instructor

课程介绍:

学习最新的监督式学习技巧, 该方法应用于面部识别、语音识别和自动驾驶汽车等常见应用 。本课程还将为学生提供具有GPU加速功能的Linux服务器来运行算法。主题包括回归,测试分类,卷积图像识别等等。

特点:

  • 本课程为学生提供专业研究级硬件,包括计算服务器, 如具有128GB随机访问存储器的16核服务器, 数TB的快速存储和研究级图形处理器, 如Titan X Pascal GPU.
  • 本课程还会教授学生如何使用linux工具和CUDA + GPU 加速Python研究环境, 使用Tensorflow-GPU 1.4, Keras 2.1.4等使用lubcudnn 6和7编译的工具。
  • 课程材料来自最近2-5年发表的最新学术研究, 包括深度网络,单发检测,卷积或矢量化语言模型, 以及(如果时间允许)一些项目展示, 比如AlphaZero Go和GAN引发的序列到序列学习.
当学生从[AI 1]进入到[AI 2]的学习时,他们的注意力转移到对现实世界数据的最佳模型精度上来。一半作业会涉及到使用预先格式化的数据集, 另一半作业则是让学生找到自己的数据集。修[AI 2]的学生将神经网络应用于文本, 图像和其他数据。这是一个实践课程,[AI 2]的大部分内容涉及解析数据并将数据应用于研究服务器。包括掌握linux命令行工具, 以及熟悉不同格式的数据,如逗号分隔文件, JSON API和各种图像文件类型。虽然这些模型是用Python编写的,但是当学生采用不同的工具以有效地处理不同的数据时,整个类是语言无关的。实际上,学生应该通过提出解释模型结果的假设,熟练掌握整个研究生命周期。

本课程不再使用Theano,学生将主要使用Tensorflow支持的Keras深度学习库进行建模。

Research from KTBYTE students and alumni

入班要求:

修完[CORE 5b]或AP计算机科学,或获得导师同意。还需掌握代数II数学。建议修[AI 1]但不强制。

项目示例

These are examples of projects that students create as they grow their skills in [AI 2]

Post-Undergraduate / Research Grade Tools, Modeling with Keras and Tensorflow

Cutting edge techniques from resesarch in the last 2-5 years, e.g. Deep Convolutional Networks and Object Detection / Localization

GPU Compute Resources for Class include Titan Xp, GTX 1080ti, 32 Virtual Core Machine with 128GB RAM

Word Vectorization, Natural Language Classification, and broad coverage of different types of data sets

Linux tools, compute servers, provided in class. Students learn how to ask the right questions and perform research independently

Independent Student Projects can be submitted to science fairs or continued on in CS85

Syllabus

Introduction to Neural Networks

In this class we'll learn about the Perceptron as the building block for neural networks and deep learning

Introduction to TensorFlow

In this class we'll start exploring how to use the TensorFlow library.

More TensorFlow, Intro to Keras

In this class we'll keep working with TensorFlow and start learning to use Keras.

Working with Images

In this lesson we'll start learning how to process images with our ML architectures, including running a model for image ID or generation.

Convolutional Neural Networks (CNN)

Today we'll start exploring a new type of neural network and learn about regularizations

Transfer Learning

Transfer learning allows us to copy effective parts of existing models. Today we will also introduce the midterm project.

Midterm Project: Image Classification

Project Day

Finish Midterm Project, presentations

Students will present their work from the midterm project. Class discussion on topics to cover in Unit 2 in order to meet student goals.

Recurrent Neural Networks (RNNs)

RNNs can be used to make predictions about time series data, like words in a sentence. Topic may change depending on student goals for Unit 2.

所有课程时间

Summer Semester: Twice Per Week

20230627CS84TueThu0645pm
18 out of 18 lessons left
Online
Main Teacher:
Marc Bucchieri**
$2021/session
New Price With Coupon: $----

** KTBYTE可以自行决定更改目前安排的授课老师

这些时间都不合适吗?

请告诉我们您可以参加课程的时间 (美东时间)
* Press the plus button to add more availabilities.
to
邮箱地址
Phone Number
学生年龄
Language
其它信息
或者